
Creating a Splash Screen
A Tutorial for BlitzMax

Sloan Kelly

Copyright © 2015 Sloan Kelly

Page 1

CREATING A SPLASH SCREEN IN BLITZMAX | Sloan Kelly

Introduction
This text will guide you through the creation of a splash screen that could be used in your programs. It

shows a number of techniques that the reader might find helpful:

 Masked text area

 Moving highlight

 State machine

 Fading to black

By the end of this tutorial you will be able to create a splash screen for your game and understand some

other concepts too.

The tutorial uses a mask image to simulate a light passing over chrome text with the highlight only

affecting the text itself and leaving the black background untouched.

Getting Started
You will need BlitzMax installed before starting this tutorial. It is assumed that you are using the

BlitzMax IDE.

Resources
The complete source code and images, as well as their Photoshop sources (PSD files) are located on my

web site at http://sloankelly.net/. Click on the “Resources” link at the top of the home page.

If you are using your own resources, you should provide the following images.

Masked Text Image
The masked text image contains an outline of a piece of text:

Figure 1 - Example of masked text. The checkerboard represents the alpha of the image

The checkerboard is the alpha of the image. This is the part of the image that will not be drawn in

BlitzMax. The file is called mask.png and is 600x72 pixels.

Background Image
The background text image can be anything, but I chose this chrome gradient because it suited the

splash screen I was creating:

http://sloankelly.net/

Page 2

CREATING A SPLASH SCREEN IN BLITZMAX | Sloan Kelly

Figure 2 - The chrome-style background image

This will be displayed underneath the mask and will be displayed on the screen like so:

Figure 3 - The combined background and mask

The effect is to have the highlight pass over the text but not shine on the black background. To have the

illusion that the light is being absorbed by the black and reflected by the chrome. The name of the

background image file is chrome.png and is 600x72 pixels.

The Highlight Image
The highlight image is a white gradient on an angle, shown with a black background here for clarity. It

too is on an alpha background:

Figure 4 - The highlight

The highlight image file is called highlight.png and is 72x72 pixels.

Start BlitzMax
Start BlitzMax and create a new document in the same location as the .png files. Save it as splash.bmx.

As we go, I will explain what each part of the code does. The code that you type into BlitzMax is shown

in monospaced type inside a grey box.

Page 3

CREATING A SPLASH SCREEN IN BLITZMAX | Sloan Kelly

The Code
Let’s start with the basics first. Enter the following text into BlitzMax:

SuperStrict

Graphics 800, 600

SetBlend ALPHABLEND

SuperStrict puts the compiler into a mode that forces you to define variables before you use it. I like this

mode because it means that I can end up with fewer bugs due to spelling mistakes.

I’ve chosen 800x600 for the graphics mode because that’s a fairly common mode that graphics cards are

capable of producing and because it’s suitable enough for our purposes. The blend mode is set because

we are using PNGs with alpha and I want to preserve the soft edges of the graphics.

Const STATE_CHROME:Int = 1

Const STATE_WAIT:Int = 2

Const STATE_FADE:Int = 3

These are the states that the splash screen uses;

 Show the chrome highlighter

 Wait a certain amount of time

 Fade to black

Const speed:Float = 300.0

Const fadeSpeed:Float = 85.0

I’m a huge proponent of using the pixels-per-second method to move sprites. The alternative is to

assume that you will be running at 60 frames per second (or 30, or whatever) and then add a number

each frame. Adding ‘4 pixels each tick’ has a couple of drawbacks.

By using pixels-per-second method, rather than just adding 4 pixels each ‘tick’, you ensure that no

matter how fast or slow your machine is, it will always travel at a constant speed. The best part is that

even if the program skips a frame, this method will ensure that your characters will always be in the

right place.

Local mask:TImage = LoadImage("mask.png")

Local chrome:TImage = LoadImage("chrome.png")

Local highlight:TImage = LoadImage("highlight.png")

The images are loaded into memory, you could embed them using the IncBin command, but in this

example we’ll just leave them on disk.

The images must be centred on screen so to ensure that, I set up some variables to hold the image

positions:

Local x:Int = (800 – ImageWidth(mask)) / 2

Local y:Int = (600 – ImageHeight(mask)) / 2

Page 4

CREATING A SPLASH SCREEN IN BLITZMAX | Sloan Kelly

The first group of co-ordinates holds the x- and y- positions of the mask and chrome images. I use the

ImageWidth() and ImageHeight() to determine the width and height of the mask image. Since the

mask and the chrome images are the same size this will display both images centre screen.

Local hx:Float = x

Local hy:Float = y

The next group of co-ordinates is the position of the highlight as it moves across the text. These will be

updated each frame. Talking of timing, the next two variables are to control the timing of various events

in our splash screen:

Local lastTime:Int = MilliSecs()

Local waitTill:Int

We need to control our colour intensity to make it look like our image is fading, this intensity is

controlled by these variables:

Local r:Float = 255, g:Float = 255, b:Float = 255

Each represents the red, green and blue components of the draw colour and we will use SetColor()

to update the drawing colour.

Our final variable holds the current state of the splash screen. The state is initially set to

STATE_CHROME:

Local state:Int = STATE_CHROME

For more information on state machines, see the section on Finite State Machines below.

That’s it for our constants and variables section of the program, now we move onto the main loop:

While Not KeyHit(KEY_ESCAPE) And r <> 0

The while loop ensures that the program still runs until the user presses the escape key, or the colours

have faded all the way down to black.

 Cls

Before you draw anything to the screen you should clear it first, unless you are wanting to do some

special effects with an un-cleared screen. The Cls command clears everything that is on the current back

buffer1 ready for us to draw on it.

 Local timeDiff:Int = MilliSecs() - lastTime

 lastTime = MilliSecs()

This is a common technique to get the delta time (the time between now and the last time this piece of

code was run) of the tick. We can use this delta time to update animations, move characters, fade

colours etc. The MilliSecs() function returns the number of milliseconds since the game started.

1 http://en.wikipedia.org/wiki/Framebuffer#Page_flipping

http://en.wikipedia.org/wiki/Framebuffer#Page_flipping

Page 5

CREATING A SPLASH SCREEN IN BLITZMAX | Sloan Kelly

Each time we go through the while loop, we check to see what state we’re in. For this we use Select.

 Select state

 Case STATE_CHROME

Our first state is the ‘chrome’ state that will move the highlight accent across the face of the text.

 Local distance:Float = (Float(timeDiff) / 1000) * speed

 hx:+distance

We use the formula to determine distance; distance = speed * time. In this case, the time is the

delta value and the speed is the number of pixels per second ‘speed’ that we created as a constant

above.

 If hx > (x + (600 - 80))

 state = STATE_WAIT

 waitTill = MilliSecs() + 3000

 End If

At the end of this state we perform a state transition if the highlight has reached the end of the text. We

set the state variable to the next state and set the waitTill to be three seconds (3000 milliseconds) in

the future.

 Case STATE_WAIT

 If MilliSecs() > waitTill

 state = STATE_FADE

 End If

The wait state holds the text on-screen for three seconds (waitTill was set in STATE_CHROME). When

the three seconds are up, the state is changed to STATE_FADE.

 Case STATE_FADE

The last state that the splash screen goes through is the fade to black stage. In order to simulate this,

we’re going to use calls to SetColor() to set the draw colour of the subsequent draw operations.

 Local change:Float = fadeSpeed * (Float(timeDiff) / 1000)

 r:-change

 g:-change

 b:-change

The change of intensity is calculated in much the same we as we did the distance travelled by the

highlighter. The fade speed is multiplied by the delta time. The delta time in timeDiff is in the range

0..1000, so we must make that a fraction by dividing that number by 1000.

Page 6

CREATING A SPLASH SCREEN IN BLITZMAX | Sloan Kelly

Next we make a check to see if the red component is less than zero. Because all the components have

the same value, we don’t have to check green and blue as well. If you want to do any special effect, like

a blue fade like they used to do in older games, you’d have to re-write this fader. Because it’s just a

simple fade to black, we can leave the if-check as this:

 If r < 0

 r = 0
 g = 0

 b = 0

 End If

 End Select

And that ends our state machine. For the most part, this is how a lot of state machines are created; a

control variable and a Select statement.

The main drawing code displays the images in a distinct order. Images drawn first are drawn at the back.

Subsequent images are drawn on top of the previous images.

 SetColor r, g, b

This sets the intensity for the subsequent calls. This is our fade colour, over time in state STATE_FADE

this becomes black.

 DrawImage chrome, x, y

Draw the chrome image at the specified intensity.

 SetColor 255, 255, 255

We don’t want any other draw function to use the fade intensity, so we reset the draw colour to full-

brightness.

 DrawImage highlight, hx, hy

 DrawImage mask, x, y

The highlight is drawn first then the mask. This means that highlight is drawn underneath the mask

image that gives the illusion that the highlight is just affecting the text. Try flipping the order of highlight

and mask and you’ll see what I mean.

 Flip

The Flip function swaps the back buffer to the front buffer. Everything we’ve just drawn is now

displayed to the user.

EndWhile

Don’t forget your EndWhile!

Page 7

CREATING A SPLASH SCREEN IN BLITZMAX | Sloan Kelly

Conclusion
Make sure that you have typed in everything as-is and run the program. You should see the chrome text

and a highlight going across it. After a short time (3 seconds), the text will begin to fade to black. At the

end of the fade, the program will terminate.

Don’t forget to download the graphics from the web site, http://sloankelly.net/.

Additional Exercises
There is a fade down state, but no fade up state. Implement a fade up state. Hint: You will need to

create a new state called STATE_FADEUP and write a new Case block in the Select statement.

Appendix – Finite State Machines
A state machine is a program, or robot or subroutine or whatever, that can be placed into any number

of ‘states of being’. They are called ‘finite’ state machines because there are a fixed number of states.

For example, an elevator has two states; moving to a floor and stopped. To move between these states

you apply some rule during the current state and then transition to the next state if that rule is met. For

example:

An elevator remains in the STOPPED state until a guest presses a floor button. At that time the elevator

changes to the MOVING state until the floor is reached. At that time, the elevator once again enters the

STOPPED state.

We can make this example more complex with call buttons and multiple floors, etc. But let’s just use this

simple elevator just now. We can then draw a state transition diagram to describe the states and the

state transitions:

Figure 5 - State transition of an elevator

http://sloankelly.net/

Page 8

CREATING A SPLASH SCREEN IN BLITZMAX | Sloan Kelly

The states are represented by the blue rectangles, the state transitions and their rules are denoted by

the blue arrows. Applying this to our splash screen, our state diagram looks like this:

Figure 6 - State transition diagram for the splash screen

Our state machine is even simpler because it just performs a linear progression through the states.

Page 9

CREATING A SPLASH SCREEN IN BLITZMAX | Sloan Kelly

Finite state machines can be used for a variety of purposes:

 Animation

 Artificial intelligence

 Program flow

 Menus

Animation
A character can be in a variety of states; running, walking or swimming. Each has its own actions and

possible inputs. For example, in Super Mario when you press the jump button when walking he does a

small jump, when running he does a longer jump and when swimming he swims closer to the surface.

Each action from that one button is determined from what state the character is in.

Artificial Intelligence
Until recently, most AI in computer games used finite state machines. For AI, state machines are used to

keep an enemy guard patrolling a specific area. If they ‘hear’ or ‘see’ the player, they will engage. The

initial state might be set to PATROL, but on seeing a player they might transition to the

ENGAGE_WITH_RANGED_WEAPON state.

Program Flow
Games themselves have different states and each part is separate;

 Splash screen

 Menus

 Playing the game

 Dying/game over screen

 …

Menus
Menus can have a sub-set of a state machine, for example;

 Video and audio settings

 Controls

 Language options

So you can see that state machines aren’t just for artificial intelligence, they’re everywhere in a game.

